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SUMMARY: The preforming stage of the LCM composite manufacturing processes leads to 
fibrous reinforcement deformations which may be very large especially for double curvature 
shapes. The knowledge of the mesoscopic deformed geometry is important for reinforcement 
permeability computations. A simulation method for woven composite fabric deformation at 
mesoscopic scale is presented. . Since yarns are made of thousands of fibers it is not possible to 
model each of them and an equivalent continuum mechanics model is developed within the hypo-
elastic theory.. The associated objective derivative is based on the fiber rotation. X-ray 
tomography is used to obtain experimental undeformed and deformed 3D geometries of the 
textile reinforcements 
. 
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INTRODUCTION 
 

When a resin flow through a composite reinforcement is analysed, the geometry of this fibrous 
reinforcement play a major role. It is often complex because of the weaving of the fibres but also 
because of the deformation due to the preforming stage. These strains are very important when 
the composite part is double curved. The objective of the present work is to propose an analysis 
of the deformation of the unit woven cell of the fibrous reinforcement (mesoscopic scale) with a 
view to simulate the resin flow within this strained unit cell and thus determine the textile 
permeability 
 
Textile composite reinforcements are made up of fibers. Consequently their mechanical behavior 
is very specific considering the possible sliding and the interactions between the fibers. When 
they are formed on double curved shapes, these fabrics are submitted to large strains, in particular 
large in-plane shear. In the present communication, the textile reinforcement deformation analysis 
is based on a rate constitutive equation specific to materials made of fibers. The objective 



derivative of this law is defined from the fiber rotation, which guarantees a correct stress update 
during the simulation. This constitutive model is implemented in ABAQUS and can be used in 
most commercial F.E. software. A second point concerns the boundary conditions that have to 
render the periodicity at large deformations and, in some cases, the evolution of contacts between 
neighbouring yarns during the motion. 
The numerical analysis of in-plane shear of a unit cell is shown and compared with experimental 
results.  
 

MECHANICAL BEHAVIOUR MODELLING OF THE YARN 
 
Hypo-Elastic Approach 
 
Rate constitutive equations (or hypo-elastic laws) [1, 2] are very much used in finite element 
analyses at large strains [3-6]. User subroutines that can be implemented in codes such as 
ABAQUS to define the mechanical constitutive behaviour are written within this framework. A 
stress rate σ∇ is related to the strain rate D by a constitutive tensor C. In order to avoid that rigid 
body rotations affect the stress state, the derivative σ∇, called objective derivative, is the 
derivative for an observer who is fixed with respect to the matter. Because this requirement is not 
uniquely defined there are several objective derivatives. In this work rotational objective 
derivatives correspond to a rotation tensor Q characterizing the rotation of the matter. The rate 
constitutive equation has the form: 

 

 ∇ =σ C : D    with  ( )T Td. . . . .
dt
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where Ω is the spin corresponding to Q, i. e. T.=Q Q
i

Ω . 

 
The most usual objective derivatives are those of Green-Naghdi [7, 8] and Jaumann [8-10]. In the 
case of the derivative of Green-Naghdi the rotation Q, considered as that of the matter, is the 
rotation R of the polar decomposition, which is derived from the decomposition F=R.U of the 
gradient tensor. In the case of the derivative of Jaumann, Q is the rotation of the corotational 
spinless frame. 
 
During a finite element analysis the rate constitutive equation is used to update stresses once the 
displacement field and the corresponding strain field have been computed over the current time 
increment. Integrating equation (1) over a time increment Δt = tn+1 - tn leads to the widely used 
formula of Hughes and Winget [11] for stress update: 
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where [ ] n

ie
S  denotes the matrix of the components of the tensor S in the basis ei ⊗ ej ⊗ … ⊗ em at 

time tn. Voigt notation is used: the components of a second order tensor are arranged in a single 



column matrix. The basis of vectors ei
n (i = 1, 3) comes from the transportation at time tn of the 

initial basis vectors ei
0 by the rotation Q which defines the objective derivative (1). The frame 

{e1
n, e2

n, e3
n} denoted as {ei

n} is called rotated frame.  
 
Textile materials are made of fibres, which makes their mechanical behaviour very specific. 
Relative sliding is possible between fibres (see fig. 1a). The yarns are made of thousands or tens 
of thousands of fibres and it is in general not possible to model each of them. The constitutive 
model that is introduced in the present paper is a continuum model intended to stand for the 
specific mechanical behaviour of the fibre bundle (fig. 1b). In this paper a single fibre direction is 
considered since the mesoscopic scale is the scale of the yarns. The fiber bundle behavior is 
supposed to be transversely isotropic. The transverse behaviour is thus assumed to be isotropic 
(though unhomogeneous). This assumption is supported by high resolution tomography 
observations [12] made on deformed and undeformed reinforcements (Fig. 2). 
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Fig. 1.  Fibre direction f1 inside a yarn. (a) actual yarn (b) equivalent continuum model. 
 
 
 

 
 

Fig. 2  Tomography reconstructed slices of a glass plain weave. Undeformed state (top) and 
biaxial tensioned state (bottom) - different scales. 

 
The equivalent continuum behaviour must take into account the fibrous nature of the material. 
The fibre direction stiffness is much larger than the others. Consequently the constitutive tensor 
C is oriented by f1 the unit vector in the direction of the fibre. The direction of the vector f1 is in 



general not constant in {ei}. Since it is a material direction, the initial fibre direction f1
0 is 

transformed by F, the gradient tensor, into f1 while {ei} is rotated by Q.  
 

To solve this problem the proposed approach [13] consists in using for equation (1) an objective 
derivative defined from the fibre rotation. 
 
 
Objective Based on the Fibre Rotation 

 
In the proposed approach, the rate constitutive equation (1) is based on the rotation of the fibre f1: 

 φ∇ =σ C : D   with  ( )T Td. . . .
dt

φ∇ ⎛ ⎞= ⎜ ⎟
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where Φ is the rotation of the fibre. It can be shown that this derivative is objective. The stress 
update (2) becomes: 
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The rotation Φ (eq. (3)) from the initial known frame {fi

0} to the current frame {fi} has to be 
determined. From the transformation gradient F, the current fibre direction f1 can be determined. 
Assuming that the initial position of the fibre is f1

0: 
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The other basis vectors f2 and f3 of the orthonormal frame {fi} are obtained from the material 
transformation of f2

0 : 
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Then the rotation Φ is derived in the following way: 
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The main interest of this approach is that the constitutive matrix in equation (4) appears in the 
frame of the fibre and consequently it is directly in its specific form corresponding to the textile 
material under consideration. This constitutive matrix written in the fibre frame can be assumed 
constant in some cases. Generally it is not; the transverse behaviour of a fibrous yarn is 
depending on the strain state. 

When using a material user subroutine in a code such as ABAQUS, the strain increment Δε is 
given at Gauss points in a frame which is not {fi} but a standard frame. In the case of 



ABAQUS/Explicit it is Green-Naghdi’s frame {ei} (ei = R. ei
0). To use equation (4) it is 

necessary to calculate [ ]
if

Δε  by a change of basis corresponding to the rotation Φ.RT. In the 

same way, when the stress update is performed with equation (4) it is necessary to return the 
stress components at tn+1 in the code’s work frame using an inverse change of basis 
(corresponding to R.ΦT). 
 
Transverse Mechanical Behaviour 

 
Thanks to the use of the fiber frame, the constitutive matrix components along the fibre direction 
and the transverse ones can be distinguished. The fibre direction modulus is obtained by a tensile 
test on a yarn. It is considered as constant. The transverse modulus (remember that the transverse 
behaviour is assumed to be isotropic) is related to the longitudinal and transverse strains. If the 
yarn undergoes longitudinal tension, it becomes transversely much stiffer. It is also very little 
stiff transversally when transverse compression is low and it becomes stiffer as compression 
increases. The following form is used for the transverse modulus ET: 

 
 ET(c, ε11) = E0 + k|ε11|c2   
 
where c is a measure of the transverse compaction namely the local cross section area variation 
and ε11 is the longitudinal strain. The coefficient values E0 and k have been identified by an 
inverse method from equi-biaxial tension tests which lead to a significant compaction of the yarn 
[14]. It was shown in [14] that in order to have a continuum with a yarn type behaviour, i.e. null 
bending stiffness (or very low), as it is the case for a bundle of several thousands of fibres 
because of relative sliding of fibres, transverse shear moduli have to be null or very low. Poisson 
ratios are supposed to be null. The values of the material properties used for the glass plain weave 
of this study are listed in Table 1. 
 

Table 1  Material parameters 
 

Longitudinal Young modulus E1 35400 MPa 
Transverse Young modulus 0.2 + 8.104|ε11|c2 MPa 
Poisson ratios 0 
Shear moduli 20 MPa 

 
 

MESOSCOPIC SIMULATION OF THE SHEAR OF 
A GLASS PLAIN WEAVE UNIT CELL 

 
The hypo-elastic material model based on the fibre rotation, introduced in section 2, is used to 
simulate the in-plane shear of a woven unit cell. There are two types of objectives for such a 
simulation. Firstly the macroscopic shear mechanical behaviour of the reinforcement can be 
determined, which is difficult experimentally. The picture frame and bias tests that are used to 
this aim are delicate. The mesoscopic simulation can also be performed at the design stage of the 
reinforcement. Secondly, it provides local mesoscopic results such as yarn deformation and shape. 
These results are very important to perform damage prediction analyses or to determine 
permeabilities of the reinforcement. 



The fabric studied in this paper is a glass plain weave of which the specifications are given in 
Table 2. The geometric model is established in order to insure its consistency, i.e. there are 
neither yarn penetrations nor unexpected voids [15]. The mesh of the yarns is mapped, which 
allows easily defining the initial fibre direction. Next, the choice of the unit cell and boundary 
conditions has to render the periodicity of the reinforcement. To this end the displacement field is 
split into a macroscopic average part and a local periodic part, which easily leads to defining 
kinematical boundary conditions for each material point of the boundary. More details about 
other requirements can be found in [16].  
 
The material parameters (see Table 1) are determined from a tensile test on a single yarn for the 
Young modulus and from an inverse method with an equi-biaxial tension test for the other 
parameters. The latter method is interesting to determine the transverse behaviour because it 
features significant transverse crushing of warp yarns over weft yarns. At last, the friction 
coefficient it set to 0.2, which is a usual value for friction between carbon fibres. 
 

Table 2  Balanced glass plain weave specifications 
 

Weaving Plain weave 
Yarn width (mm)  
 

Warp: 3,2 
Weft: 3,1 

Densities (Yarn/mm)  
 

Warp: 0,251 
Weft: 0,248 

Crimp (%)  
 

Warp: 0,5 
Weft: 0,54 

Surface weight (g/m²) 600  
 

Fig. 3b shows the shear curve extracted from the computations compared with the one of an 
experimental picture frame test. From 35° the stiffness increases significantly with the shear 
angle because of the yarn locking within the woven cell. From this transition, the shear stiffness 
is related to lateral crushing of the yarns due to the square geometry turning into a rhomboid one. 
The agreement is good, keeping in mind that spurious tensions are very difficult to avoid in the 
picture frame test and tend to slightly overestimate the shear curve at large shear angles. This is 
the main reason why results may be different from one test to another. 
 
The deformed cell for a shear angle of 53° is shown in Fig. 3a. The local compaction is plotted 
and this value can locally reach 39%. Though this deformed geometry doesn’t suffer any major 
distortion or defects, it can not be evaluated further at the moment. It is planed to use tomography 
as an observation tool of deformed woven reinforcements in order to compare the obtained 
images with the simulated shape. 
 



(a) 

(b) 
 

Fig. 3  (a) Deformed unit cell with contours of local compaction;  
(b) Shear curve, simulation vs experiment. 

. 
 
 

CONCLUSION 
 

The deformation of the fiber reinforcement during preforming is a critical information for flow 
simulations in order to determine the permeability of the reinforcement [17]. A method for the 
analysis of this mesoscopic deformation of woven reinforcements was presented. A very 
important aspect is the yarn constitutive model which is based on a specific transversely isotropic 
hypo-elastic model developed for large strain analysis of textile composite reinforcements. It is 
based on an objective derivative defined from the fibre rotation. The approach is simple and can 
be implemented in any commercial F.E. software. Nevertheless it must be underlined that its 
efficiency will depend on the quality of the identification of the constitutive matrix. Especially 
the transverse moduli mainly depend on the fibre compaction (i.e. on strains) and their values are 
very important for the accuracy of the simulation. The results presented in the case of in plane 
shear are good compared to the experiments. However, further investigations are needed to 
evaluate the deformed geometry. This is the point of the work in progress using tomography as an 
observation tool [12]. 
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